
GPU-accelerated CFD Simulations
for Turbomachinery Design Optimization

Mohamed H. Aissa

Co-promotor:Dr. Tom Verstraete

Promotor: Prof. C. Vuik

www.researchgate.net/profile/Mohamed_Aissa3

https://repository.tudelft.nl/islandora/object/uuid%3A1fcc6ab4-daf5-416d-819a-2a7b0594c369
https://repository.tudelft.nl/islandora/object/uuid%3A1fcc6ab4-daf5-416d-819a-2a7b0594c369
http://www.researchgate.net/profile/Mohamed_Aissa3


Can your simulation profit from the GPU?

• What is a GPU?
• How fast it is?
• How to use it?



Multi-core vs many-core

Processor

Control Unit

Memory

Processor

Control Unit

Memory

Processor

Control Unit

Memory

Processor

Control Unit

Memory

Communication Netwok

Processor

Control Unit

Memory

Processor ProcessorProcessor

2/35



Massive Parallel Systems (e.g. GPU) as a trade-off

ALU

Control Unit

Memory

ALU
ALU

ALU
ALU

ALU
ALU

ALU
ALU

ALU
ALU

ALU
ALU

ALU
ALU

ALU
ALU

ALU ALU ALU

Source: the 
guardian.com

3



How fast is it?

Performance Gain

LU 
QR

SpMV Ray 
tracing

FFT Image 
processing

How to use a GPU

Ease of

Use

Performance Gain

GPU libraires:
cuFFT, cuBLAS…

Lattice 
Boltzmann

4 



Airplanes are getting
more efficient

Engine optimization 
is a main contributor



Topic of Interest

• Nblades= 15
• Chord length fixed

• Casing fixture

TurboLab Stator (1/4)

60 mm d=10mm
h=20mm

d=2mm
6



Inlet P0: 102713.0 Pa
Inlet T0: 294.314 K 

Inlet whirl angle: 42°
Inlet pitch angle: 0 °

TurboLab (2/4): Boundary conditions 
and summary

Objectives:
• Lower axial deviation
• Lower total pressure loss

9 kg/s 

7



TurboLab (3/4): Parametrization
21 Design variables

8



TurboLab (4/4):Optimization Results

1.7 %

IT074IND6

60%

0.17%

9
Every point is a costly CFD optimization  need for a HPC solution



How beneficial are GPUs, a quick literature 
check:

• Acceleration is case-dependent (from 1x to 1000x).

• Speedups are sometimes contradicting.

• Some publications are very critical to GPUs for scientific computations:
– Lee et al “Debunking the 100x GPU vs. CPU myth” 

– Vuduc et al. “On the limits of GPU acceleration”

10/35



Main objective:  
A more tangible GPU potential 

CFD GPU solvers Classification 
of CFD operations

Summary
and Conclusions

Proof-of-concept: 
Optimization cases

* All icon in this document from Flaticon.com



Main objective:  
A more tangible GPU potential 

CFD GPU solvers Classification 
of CFD operations

Summary
and Conclusions

Proof-of-concept: 
Optimization cases



Numerical Scheme:

Implicit Time Stepping 

Explicit Time Stepping 

12



Main objective:  
A more tangible GPU potential 

CFD GPU solvers Classification 
of CFD operations

Summary
and Conclusions

Proof-of-concept: 
Optimization cases

• Explicit time integration



Explicit solver

• Application:
Steady RANS simulation

• Solved Equations:
RANS (SA Model) 

• Discretization (2nd Order):
Roe Scheme + Flux Limiter
Explicit RK 4 Stage

• Mesh: Multi-Block, Structured

• Acceleration:  
• 2 level Multigrid
• Implicit Residual Smoothing

13



Explicit solver

162

90

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500

Sp
e

e
d

u
p

 (
o

ve
r 

1
 c

o
re

 X
eo

n
 E

3
)

N Cells in thousands 

GTX980

K40

13



Convective Flux Evaluation (1/3)

14



Convective Flux (2/3):
Thread mapping possibilities

• Face-wise is not thread-safe

18 /47



• Cell-based mapping  thread safe 
but with redundancy

14

Convective Flux (2/3): 
Thread mapping possibilities



• Direction-based mapping  thread safe 
and less redundancy

14

Convective Flux (2/3): 
Thread mapping possibilities



• Multicoloring (MC) Face-based mapping
thread safe and No redundancy

14

Convective Flux (2/3): 
Thread mapping possibilities



Compute 
Residual at 

face i

Read 
striped

N/2 thread

Store
striped

i+1i

MC: Run 1

Compute 
Residual at 

face i

Read 
coalesced

N  thread

Store
coalesced

i

Red: Run 1

Compute 
Residual at 

face i+1

N  thread

Compute 
Residual at 

face i+1

N/2 threadMC: Run 2

i+2i+1
Read 
striped

Store
striped 0

50

100

150

200

250

1 2 3 4 5 6 7 8M
em

o
ry

 B
an

d
w

id
th

 [
G

B
/s

]

Stride length (in 4 bytes)

Memory bandwidth for striped 
memory access on GTX780:

A[i*stride]=B[i*stride]+C[i*stride]

15/35

Convective Flux (3/3): 
Multicolred (MC) vs redundant (Red)



MC RED

Face fluxes per call N/2 2N

Total faces fluxes N 2N

Time per call [ms] 0,28 0,71

Total time [ms] 0,56 0,71

Operations  ratio - 2x

Total Speedup 1,26x -

1,26x instead of 2x:
cost of striped access

16

Convective Flux (3/3): 
Multicolred (MC) vs redundant (Red)



Convergence Acceleration on GPU (1/3)

• Explicit solver is well adapted to the GPU architecture
• Flow convergence is slow (CFL limitation)
• Need for convergence acceleration.

• convergence acceleration methods on the GPU?
• Multigrid
• Implicit residual smoothing

17



Convergence Acceleration on GPU (2/3): 
Multigrid is also fast on the GPU

• Solve on fine grid
• Interpolate solution and residual to coarse grid

CPU

GPU
1,81

1,58
1,35

0

0,5

1

1,5

2

0 100 200 300 400 500

T 2
xG

ri
d

s/
T 1

G
ri

d

N Cells in thousands

Cost of a 2-Grid scheme
converging to ideal cost of 1,125

• Solve on coase grid assisted by fine residual
• Prolongate coarse correction to fine grid

1,125

18



Convergence Acceleration on GPU (3/3): 
Implicit Residual Smoothing on GPU

• Higher CFL  Oscillation in the solution.

• A smoother residual reduces the oscillation ->Higher CFLs.

• Smoothing: diffusion equation  solve a tridiagonal system.

i: 0 -> Ni

j: 0
 -> N

j



• Higher CFL  Oscillation in the solution.

• A smoother residual reduces the oscillation ->Higher CFLs.

• Smoothing: diffusion equation  solve a tridiagonal system.

Interesting envelop
(CFL increase with IRS x2-x3)

i: 0 -> Ni

j: 0
 -> N

j

19

Convergence Acceleration on GPU (3/3): 
Implicit Residual Smoothing on GPU



Main objective:  
A more tangible GPU potential 

CFD GPU solvers
• Explicit time integration
• Implicit time integration

Classification 
of CFD operations

Summary
and Conclusions

Proof-of-concept: 
Optimization cases



Implicit Time Stepping is more Stable but …

20



GMRES + Preconditioner

21/35



ILU is costly on GPU

• ILU-GMRES: Small gain
on every iteration 
but ILU setup is slow:

• MCILU-GMRES: Multi-
colored ILU fast only for 
small problems.

0

1

2

3

4

5

6

7

8

9

10

264k 1058k 2249k 4631k

Sp
ee

d
u

p

Nrows

Speedup Krylov Speedup ILU

0

1

2

3

4

5

6

7

8

9

264k 1058k 2249k 4631k
Sp

ee
d

u
p

Nrows

Speedup Krylov Speedup MCILU



Why not Jacobi PC

0

20

40

60

80

100

120

140

160

180

264k 1058k 2249k 4631k

Sp
ee

d
u

p

Nrows

Speedup Krylov Speedup Jacobi

• Jacobi-GMRES: very fast
but stable only for small 
time steps

• Jacobi-GMRES: Speedup 
decreases for higher CFLs

23



5602
3412 3586

1178

16568

579

16691

591

CPU ILU GPU ILU CPU OD-ILU GPU OD-ILU

Solve [s] Assemble[s]

On-demand factorization

5.55x
11.46x

24



Main objective:  
A more tangible GPU potential 

CFD GPU solvers Classification 
of CFD operations

Summary
and Conclusions

Proof-of-concept: 
Optimization cases



Speedup 
1000x

Speedup 
10x

Actually 
GPU is 
slower

Picture modified from :https://pixabay.com/en/blind-men-elephant-story
-feel-see-1458438/

Classification (1/2):
GPUs controversy

• GPU thousands of lightweight cores.

• Explicit solver: 10x to 100x speedup.

• Implicit solver: 1x to 10x speedup

We need a classification

25



Speedup 
1000x

Speedup 
10x

Actually 
GPU is 
slower

Picture modified from :https://pixabay.com/en/blind-men-elephant-story
-feel-see-1458438/

25

Classification (1/2):
GPUs controversy



38

Full article:  
Aissa M. ,  Verstraete ,T., and Vuik, c.. "Toward a GPU-aware comparison of explicit and implicit CFD simulations on structured meshes." 
Computers & Mathematics with Applications 74.1 (2017): 201-217. 

Speedup 
1000x

Speedup 
10x

Actually 
GPU is 
slower

25

Classification (2/2):
CFD operations

http://ta.twi.tudelft.nl/nw/users/vuik/papers/Ais17VV.pdf


Performance Comparison: Explicit/Implicit

136x

7x

3x

Ref

GPU Explicit

GPU Implicit

CPU Implicit

CPU Explicit

26



Performance Comparison: Explicit/Implicit

0,001

0,01

0,1

1

10

100

1000

0,1 1 10 100 1000

Implicit CPU Explicit CPU implicit GPU explicit GPU

136x

Normalized 
wall time

27



Main objective:  
A more tangible GPU potential 

CFD GPU solvers Classification 
of CFD operations

Summary
and Conclusions

Proof-of-concept: 
Optimization cases



Rc=14 (low CFL for implicit =15)

Example of a stator Optimization

0,001

0,01

0,1

1

10

100

1000

0,1 1 10 100 1000

Implicit CPU Explicit CPU

implicit GPU explicit GPU

28/35



Example of a stator Optimization

29



Example of a stator Optimization



LS82 cascade

Rc=457 (Explicit solver bad flow convergence)

0,001

0,01

0,1

1

10

100

1000

0,1 1 10 100 1000

Implicit CPU Explicit CPU

implicit GPU explicit GPU

31



LS82 cascade: Results

32



LS82 cascade: Optimized blade



Main objective:  
A more tangible GPU potential 

CFD GPU solvers Classification 
of CFD operations

Summary
and Conclusions

Proof-of-concept: 
Optimization cases



Summary

Choice Explicit/Implicit: 
Convergence ratio is decisive. 

Explicit RANS:
100x-180x speedup.

Implicit RANS: 10x-20x speedup
(due to slow preconditioning.

On-demand preconditioning:
x3 faster but GPU-friendlier
preconditioner is needed.

The classification: 
an operation-specific 
acceleration offers more insights. 

34



Can your simulation profit from the GPU?

• Where you situate your algorithm (slide 4: QR to ray-tracing)?
• Do you need double precision (for half-precision FPGA is faster)?
• ready to code (otherwise openACC is easier to use)?
• Anyone provided a classification for operation used in your field?

35



Thanks for  your attention

Dr. Mohamed H. Aissa

Turbomachinery & Propulsion Department

Email: aissa@vki.ac.be

www.researchgate.net/profile/Mohamed_Aissa3

mailto:aissa@vki.ac.be
http://www.researchgate.net/profile/Mohamed_Aissa3

